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ABSTRACT

Let (el,xl),...,(en,xn) be independent and identically dis-
tributed random vectors with E(x|8) = 8 and Var(x|6) =
a+ bo + c62. Let ty be the linear Bayes estimator of Gi and
Bi be the linear empirical Bayes estimator of Bi as proposed in
Robbins (1983), when Ex and Var x are unknown to the statisti-
cian. The regret of using 6i instead of ty because of ignor-
r, = B, -8)% -k, - 0%

Under appropriate conditions cumulative regret Rn = rl+...+ r is

ance of the mean and the variance is

shown to have a finite limit even when n tends to infinity. The
limit can be explicitly computed in terms of a,b,c and the first

four moments of x.
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1. INTRODUCTION AND SUMMARY

In the first Jerzy Neyman Memorial Lecture, Robbins (1983)
has outlined a wide class of problems concerning the general empi-
rical Baves approach and the linear empirical Bayes approach to
estimation. In this paper we shall study a special case which in-
’cludes several important standard distributions. Specifically let
(8,x) be a random vector such that é has a distribution function

G, and the conditional expectation of x given 6 satisfies

E(x [9) = §. (1.1)

Suppose it is desired to use a linear function A+Bx of the ob~-
served x to estimate the unknown parameter ©. If the loss

function is squared error, the best linear estimate is

Cov(e,x) (x-Ex)

t(x) = Ef + Var % . (1.2)
and the mean squared error is
2
2 Cov (6,x)
- = IR ASRLCE Y.V
E(t-8) Var © Var x ° (1.3)
Assume, in addition to (1l.1), that
Var(xle) =g+ bH + CGL . (1.4)

for some known constants a,b, and ¢. Then (1.2) can be written as

¢ Var x+a+b Ex+cE2x
(c+l) Var x

t(x) = Ex + (1 - ) (x-Ex) (1.5)

which is computable if Ex and Var x are known,

We shall be dealing with the case when Ex and Var x are un-
known, However we are faced with a large number n of independent
versions of the component problem: (el,xl),...,(en,xn) are
independent random vectors having the same distributions as (8,x).
Robbins (1983) has proposed to estimate Ex and Var x respectively

by

- 1
X == X,, and s =
n i

=0

n -
D (x;=x)7, (1.6)
1

. 2 - =2
and use the following statistic (with h = ¢cs™ + a + bx + ¢cx7),
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5i=§+(1- ————h———)+(x-)—<) (1.7)

(c+l)s2

to estimate ei, for each 1i=1,...,n . He has also hoped that
under some mild restrictions on the nature of G, with some reason-
able rapidity as n tends to infinity

2 s E(e-07 . (1.8)

E(Bi - Gi)

We shall assume that the best linear estimate (1.2) is also
the best general estimate E(elx). This assumption will reduce
the class of possible distributions for 6, F¥For instance, if «x
has a distribution from an exponential family with parameter 8,
then the above assumption will limit the class of the prior dis-
tributions to the conjugate family. See Diaconis and Ylvisaker
(1979). However, even this special case will be wide enough to
include many standard distributions used in practice. In this
case we shall verify (1.8). 1Indeed we shall consider the

cumulative regret

2 2
- E(t(x;) - 6.)7) (1.9)

n
R = % (EC8; -6
of using gi instead of t(xi) because of the statistician's ignor-
ance of Ex and Var x. It can be shown that even as n goes to
infinity R.n remains bounded so that (1.8) will hold. We summar-
ize the main results in the following theorem and leave the proof

to the next section.

Theorem 1. Let (8,x), (Gl,xl), .++ be independent and identically

distributed nondegenerate random vectors such that

(i) E(x[G) = 0, Var(xle) = a+b6+c92.
(ii) E(8]x) = E® + (x-Ex) Cov(9,x)/Var x.
(iii) Ex6 < o,
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For each n=2,..., and for each 1i=1,2,...,n, define

- - 1 2 2 1
X=X =-= X, and s = s = ——
n n i n n-1

= o~13

n
) (x-07,

¢ Var x+a+b Ex+cE2x

ti = Ex + (1 - (cF1) Var x ) (xi-Ex), (1.10)
2 - =2

8. =%+ (1 - EE_iEiEE%EE_)+ (x,—z), and

1 (c+l)s l

T~ 2 2
R = § (E(8, -8,)" - E(t; ~8)7).
Then
2 2

lim R = H + g (1.11)

e 0 (DY (DB
2 3 4
where U = Ex, Y = Var x, u3 = E(x-W)", u4 = E(x-p) ,
H = cyz + a+ by + cuz, and (1.12)
2 4 2.2 6 2
0" = (1, =Y ) (atbuteu )™ + v (b+2ep)
- 2y2p3(a+bu+cu2)(b+2cu)

For the special case when b=c=0, a slightly more general
result can be established under weaker conditions. The result is

in Theorem 2.

Theorem 2. Let (Gl,xl), (62,x2), ... be independent random vec-

tors satisfying the following conditions:
(A) For all i,

(1) Exi = u and Var X, = YZ > 0.

. _ _ 2
(ii) E(xilei) = Gi and Var(xi|ei) =a <vy",

2
Eei + (xi—u) Cov(ei,xi)/Y .

(iii) E(ei|xi)
(8) (iv) {(xi-u)z, i 2 1} satisfies the Lindeberg

condition.
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n
2
Z (xi—u) converges in probability to Yz,
: 17 2
and lim =} Var(x,-u)“ is finite.
n 7 i

For each n = 2,..., and each i=1,2,...,n, put

n n
- _=- _1 2 _2_ 1 -2
R U RN (1.13)
1
_ a
L, = Exi-+(l Var ) (x, -Ex.),
~ - a. .+ -
ei =x + (1.——30 (xi-x), and
vt 2
R = g (E(8; -8,)7 - E(t, -68)7).
Then
a2 a2
lim R =—7+—6K, (1.14)
e Tyt y
1 T 2
where K=1lim=V, and V_ = Z Var(x.,-u)".
n n n i
n- 1

2. PROOF OF THE MAIN RESULTS

We need some preliminary results for Theorem 1.

Lemma 1. Let XyXq9Xgseees be independent and identically distri-
buted random variables with Ex4 < ®, Let the following notation
be used: u = Ex, Yz = Var X, u3 = E(x-u)3 and M, = E(x-u)a.

For each n 2 1, put

1, % 2 2
W= (] (x,-w° - ¥, (2.1)
1n Ja 1 i
n
_ 1 22
wzn—‘/;(gu(xi ) Y'x,), and
W, = /A x -ud).

Then as n tends to infinityv, (W W, ) converges in distri-

W
In’ " 2n’ 3n
bution to a multivariate normal distribution with mean g and
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covariance matrix % = (oij), where

4

' - _ _ .2 _ b 6 2
‘ Oy H, =Y s Oy =M (u4 Y) + Yy -2y g, (2.2)

2

2 - 4 2
O33 = 4W Y7, 015 = B, =Y) = Y Uy,

_ _ 2 4
013 = 2uu3, and 023 2u u3 - 2uy .
The proof of the Lemma is straightforward and is omitted. -

Corollary 1. Under the same conditions as Lemma 1, as n + o,

2 2
+ + _ . . . .
(at+cy )wln bw2n cy w3n has an asymptotic normal distribution

) with mean 0 and variance
“y

: 2 4 2.2 6 2

g = (u4—y ) (a+butcp”™) " + v (b+2cp) (2.3)

- - 2y2u3(a+bu+cu2)(b+2cu).

Lemma 2. Let XsXg5eees be independent and identically distri-

y buted random variables with mean WM and variance t
N 2 S
- Y = a+ bEx + cE%x + d, (2.4) t
. <
N where a,b,c and d are constants and d > 0. Assume Ex4 < oo, .
.. For each n 2 2, put 5
a n -
. _ -2 W
- x = l-z X, and 52 =L Z (x,-x)". (2.5) N
. n i n-1 i “
. 1 1

" Then as n tends to infinity ?

g nP [ s < atbxdcx’] + 0. (2.6)

: Proof: Choose s >0, such that € = d-}c+1|8-|b+2uc|+vS > 0.
Then
Pls? < atbitcx’] (2.7) -
i < P[Z((xi—u)2 - Yz)s na +nbX + ncx> -nyz-+n(§—u)2]

: 2 - 2. =
< P[Z«xi-u) - Y% < -gn, (x-u)° < §] .

- +P[(-)? 2 6] . R
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2 2
Let B = {Z«xi-u) - Y7 < -en}. Then the first term in (2.7) is

less than or equal to

P[]Z((xi-u)2 - Y%I > en] (2.8)

A

le' fB ((xi—u)2 - YZ))2 dp
€n

which is o(l1/n) as n tends to infinity by the uniform integra-
L q 2 2
bility of {I(Z«xi—u) - Y%D /n, n =2 1} implied by Ex4 < o, For

the second term in (2.7)
. PL(R-1)2 > 6] (2.9)

< 57¥Z-<n<s<x—u>“-y4> + (3a” - 207"
n

ii which is o(1/n) as n tends to infinity, This concludes the

proof of Lemmu 2.

Lemma 3. Let XyXypeee be independent and identically distributed
random variables with mean WU and variance YZ. Assume that
Ex6 < ®, For each n 2 2, put

1 n

n
- _1 2 _ =2
x == % X, and s = Py § (xi x) . (2.10)

Then the following families of random variables are uniformly

integrable:

(1) {nst(s2vH%, 0 2 2},
(ii) (ns?(%-w?%, n = 2}, (2.11)
(iii) tas? &2-u®)2, n 2 2},

Proof. We shall verify (i) and (iii). The verification for (ii)
is entirely analogous and hence omitted. For (1),

nsz(sz-—yz)2 (2.12)

2 2 2,2 2
= n(s -y )3 + ny (s —Yz)
2 2 - .23
< £ e -w° - Yz)l3 + Lyt - nG-w 7
oy i nl

<
’

2 2
- 2 - 2
+ _IS._{_. IZ«X_U) - Yz)lz + .K_L ‘Yz - n(X"U) ‘
n 1 n
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for some constant K,

Since Ex6 < o, it is clear the four terms on the bottom line of
(2.12) are uniformly integrable. For (iii), for any event D with

P[D] small,

2 -2 2.2
Ens (x"-u) ID (2.13)
Z(x, -0’
i 3 1/3 =2 2.2.3/2 2/3 N
< k(E—i—0)? 1)1 GaEaDHDH Y 1), X
n D D [
N
which can be made small uniformly in n. -ﬂ
Now we are ready to give the proofs. That the convergence -1

in distribution of random variables together with uniform inte-
grability implies moment convergence is used. For a reference,

see (Chow and Teicher (1978), Section 8.1).

N [JONIN

Proof of Theorem 1. Let

h = c52 + a+b§+c§2. (2.14)
From the identity

P 2 2
(ei-ei) - (ti—ei) (2.15)

- 2 a ]
= (ei-ci) + 2(ei—ti)(ti—ei) ;

taking expectation and summation and by assumptions (i) and (ii)
we have the cumulative regret

2
R = —1 + E(—2 h 2 T(x.-%)°  (2.16)
n 2 2 2 i
(c+l)7y (c+1)Y maxt,(c+1)s”)

As n tends to infinity 32 and h will go to Yz and H respec-

tively with probability one. Since, (see Robbins (1983)),
2 __H 2.17
Y ey + Var 0O, (2.17)

and 6 1is nondegenerate, asymptotically the term inside the expec-

tation sign in (2.1¢) is equivalent to

o
1
T
*
4
Jd
.
ii
' “
e
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n (SZH-YZh)2

(c+l)2Y4 52 2.18)
- —L o (arerd)vacsP D) + Vs R - ey EG )
(e+l)y s
1 2 Z((xi-u)z-Yz) Zu(xi-u)Z—szi
- —L— ((arar®) +b
(c+1) 7y vn Vo

- P AE S + op(l))2 i

By Corollary 1 and (2.18), (Xi denoting chi-squared with 1 d.f.),

T (—— - s 7 I8’ (2.19)
(e+l)y max (h, (c+1)s")
: 02 2 2
converges in distribution to X,s Wwhere O is defined
2.6 M1
(c+l)7y

in (2.3) Next we shall show that {T,n 22} is uniformly inte-
grable so that as n tends to infinity

2
ET + —2— (2.20)

(c+l)2Y6
Let A be the event {(c+l)s2 < h}, then for some positive K

ETI, s K IA (na+nb}—<+nc>_<2) dp (2.21)

IA

K (a+bp+cu?)nP[A] + Kbn jAli-pth +Ken fAIEZ-uzldP

K(a+bu+cu2)nP[A] + Kbvn ((En(;{—u)z)P[A])%

IA

%

+ KcJ{{(En(;z-uz)zP[A]) R

which is o0o(1) by Lemma 2, On the complement of A,

2 4
E—tl—;—l—r (2.22)
2 4
_ (c+;) Y B ___h b _h 2)zz(x._}z)z
(c+l)y (c+l)Y (c+l)y (c+l)s 1

. e
L amm e e e e e e e e e e e e e Lo
T e N N T S S e e e T e e e e e e e e T LTI PRI SN
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2. -2 nn L2 .22
s (B-h)"E(x -x)" + —5 (s7-y ) -
s -
- - .2 -2 -
< 4 (sPyD)E 07 + w6? G PTix ) <
8
- - 2,2 2.2
+ 4l @D -0 + () s’ ("D’ ;
; By Lemma 3, the four terms on the bottom line of (2.,22) are uni-
E formly integrable. Therefore we have the regret
‘ 2 2
c
P lin R = ——tmy + — (2.23) 3
N . no (c+1)7y (c+1) 7y )
Remark. The expression for 02 contains terms up to the fourth é
moment. Although it has terms of the eighth order (e.g. czuéua), ;?
the sixth moment assumption is to ensure the uniform integrability .
of {(—L-Z((xi-u)z—yz))3, n 21} in Lemma 3. Nevertheless it is 1
n o
reasonable to conjecture that condition (iii) in Theorem 1 can be .-
s
replaced by Ex4 < o, )
Proof of Theorem 2. From the identity ££
- 2 y 2 3
-6 - - = - <L
(ei i) (ti ei) (Oi ti) (2.24) :
+2(8,-t,)(e,-08.);
taking summation and expectation and by assumptions (i), (ii), -3
and (iii), and definition (1.13) we have the regret equal to o
2 7
R =& a2 gl o 1 3% ool (2.25) ‘
n 2 2 i .
Y Y max(s ,a) K
- 2 - . :
Let v; = Var(xi u) and Vn = vl+v2 +...% V. Consider the event :
A = {s2<a}, then
1 -
B - — 125 -0 1 (2.26)
2 2 i A
Y max{(x ,a)
2 -
< ¢cn Pis” g a) N
for some positive constant c¢. And <
\..
v
N
b
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(s’ < a] < p[z«xi-u)z-yz)s (a=y>)n+n (o) 2] (2.27)
< PIEG w2y 5 avhn + nGen?, Gew? < 6]
- 2
+ P{(x-p)" = ¢].
Choose & > 0 such that a—y2+6 =~ <0, Let B be

{Z«xi-u)z - yz)s - en},

then
nP[Z((xi--u)2 - Y% < - en] (2.28)
v Py
S5 B v dP
€En ] n

which goes to zero as n tends to infinity by conditions (iv) and
(v), and Brown's Theorem (see Chow and Teicher (1978), p. 398).

Next, consider
aP[(-w) 7 = 6] (2.29)

<2 E(x-1)? = ~%53-(XVar(x.-u)2 + (3n2-20)7")
8 §°n 1

which goes to zero as n tends to infinity by condition (v). On

the complement of A, and for any event D

5635 -1 _? z(xi_;)z 1 I, (2.30)
Y max(s”,a) A

2Ge~0)% - (a-Dy? \ 2 )
= E Z(xi—E) 1

I
YZZ(X.—§)2 AP
1
- 2.2
v (E(x,-%)7 - (a-1)Y")
< n E > I I
- 4 v ¢’ D
(n-1)aY n A

which may be made very small uniformly in n if P[D] is small

for the same reason as in (2.28), Therefore the family

RN “s

.....
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1 1 2 -
(& - —— rx 0% a2 2) (2.31)
Y max(s” ,a)

A (D

r
]
. 2

is uniformly integrable. And by condition (v), as n tends to

2

AP 2 -
infinity s tends to yz and x tends to Y in probability.

By condition (iv), as n tends to infinity

L

e, -0° - (a-1y’

-+ N(0,1) in distribution. (2.32)
A
n
Hence v
B - — 2 5% px -0 L 1in R (2.33)
2 i 6 n
Y max(s”,a) Y nteo
that is 2 32 Vn
lim R =23+ & lin = . (2.34)
n 2 6 n
n—oo Y Y oo

Corollary: Let (el,xl), (62,x2), ... be independent and identi-
cally distributed random vectors satisfying condition (A) in the
Theorem. 1If ExA < o Rn and ei are defined in the same way as
in (1.13) and (1.14), then

2

i = .é— --——x--l"I 4
lim Rn 5 E( Y ) . (2.35)

n—+-o

<

Example 1. Suppose ® has a common normal distribution with mean
4 and variance T and given 0, x has a normal distribution

with mean 6 and variance a. Then x has a normal distribution

with mean u and variance Y2 = a-+12. Obviously the conditions :
of the corollary hold; hence the regret Rn is 332/(a-+12)-+o(l), i’

as n tends to infinity. T

Gi in this normal case is a variant of the James-Stein estimator,
which has been studied extensively in the literature. See Efron

and Morris (1973).

Example 2. Suppose 6 has an inverted gamma distribution with

density function

CA T Y LT
I DA A D G A R N
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g(8) =
0 if 8 <0,
where 3 > 0 and o > 6, and given 0O, x has an exponential
distribution with mean 6 and variance 62. The conditions (i),
(ii) and (iii) in Theorem 1 hold with a=b=0 and c¢=1. It can be

computed that, for any 0 < p < 6;

p _ 8°r(P+1)T(a-P)
T'(o)

Ex

If the linear empirical Bayes estimators are used, then the cumu-

lative regret Rn will satisfy

z 2
lim R = 2§a—l)(a =4ot+6) B .
oo T ot (a=2) (@-3) (0=4)

Example 3. Suppose 0 has a gamma distribution with the density
function

. 0 if 8 <0

N g (8) =
- Baea—le-Be

" if 8> 0,

where o and B are positive constants, and given 6, x has a
Poisson distribution with mean 6. 1In this case, the conditions
E (i), (ii) and (iii) in Theorem 1 hold with a=c=0 and b=1l. If
the linear empirical Bayes estimators are used, then the regret R.n

will satisfy

i = 2B + 2683
n-+o (B+1)
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